FeB-CrB Stacking Variants in the System GdNi-TbNi

By K. Klepp and E. Parthé
Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

(Received 29 July 1980; accepted 8 September 1980)

Abstract

In the system $\mathrm{Gd}_{1-x} \mathrm{~Tb}_{x} \mathrm{Ni}$ three mixed $\mathrm{FeB}-\mathrm{CrB}$ stacking variants have been found, all having monoclinic symmetry with space group $P 2_{1} / m . \mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ with base-structure stacking $h_{2} c_{3} h_{2} c_{2}: a=32.49$ (7), $b=4.226$ (6), $c=5.478$ (8) $\AA, \beta=101.9$ (2) ${ }^{\circ}, Z=18$, $R=0.091 ; \mathrm{Gd}_{0.3} \mathrm{~Tb}_{0.7} \mathrm{Ni}$ with base-structure stacking $h_{2} c_{2}: a=14.35$ (2), $b=4.201$ (2), $c=5.458$ (4) $\AA, \beta=$ $100 \cdot 6(1)^{\circ}, Z=8 ; \mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$ with base-structure stacking $h_{2} c: a=10.67$ (2) $, b=4.195(4), c=$ 5.457 (8) $\AA, \beta=97.2(2)^{\circ}, Z=6, R=0.071$. The refined lattice constants of TbNi , low-temperature modification, are $a=21.34$ (4), $b=4.197$ (2), $c=$ 5.458 (3) $\AA, \beta=97.1(1)^{\circ}$. A study of the possible space groups of $\mathrm{FeB}-\mathrm{CrB}$ stacking variants indicates that six space groups can occur depending on the symmetry of the Zhdanov stacking symbol.

Introduction

It has recently been shown that $\mathrm{FeB}-\mathrm{CrB}$ stacking variants are formed in $R_{1-x} R_{x}^{\prime}$ Ni systems where $R=$ Gd and $R^{\prime}=\mathrm{Dy}, \mathrm{Y}$ (Klepp \& Parthé, 1980). In the course of a more detailed study of these stacking variants it was of interest to investigate the pseudobinary system $\mathrm{GdNi}-\mathrm{TbNi}$ for their formation. TbNi itself crystallizes with an $\mathrm{FeB}-\mathrm{CrB}$ stacking variant (Lemaire \& Paccard, 1970), with $66 \cdot 7 \%$ hexagonal base-structure stacking (low-temperature modification), while GdNi adopts the CrB structure type (0% hexagonal base-structure stacking).

Sample preparation

Samples in the system $\mathrm{Gd}_{1-x} \mathrm{~Tb}_{x} \mathrm{Ni}$ were prepared from metals of high purity (Gd , $\mathrm{Tb} 99.9 \%$, Ni 99.99%) by conventional arc-melting techniques. The ingots thus obtained were wrapped in Ta foil and sealed in evacuated silica tubes. They were annealed at 1073 K for five weeks and then allowed to cool slowly in the furnace.

Derivation of stacking variant from unit-cell data

Powder diagrams taken with a Guinier-de Wolff camera ($\mathrm{Cu} K \alpha$ radiation) indicated the existence of three ternary phases $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}, \mathrm{Gd}_{0.3} \mathrm{~Tb}_{0.7} \mathrm{Ni}$ and $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$. The diffraction diagrams of the latter two showed close similarities to those of the $\mathrm{FeB}-\mathrm{CrB}$ stacking variants $\mathrm{Gd}_{0.55} \mathrm{Dy}_{0.45} \mathrm{Ni}$ and $\mathrm{Gd}_{0.7} \mathrm{Y}_{0.3} \mathrm{Ni}$ reported previously (Klepp \& Parthé, 1980), whereas the powder pattern of $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ was of a new type.

Small single crystals of irregular shape were isolated from all three alloys. Crystallographic investigations showed that they had monoclinic symmetry with systematic extinctions for $0 k 0: k=2 n+1$, indicating $P 2_{1} / m$ or $P 2_{1}$ as possible space groups. Precise lattice constants were determined on a four-circle diffractometer (Philips PW 1100) with graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$). Translation periods of a number of reciprocal-lattice rows were measured from which the lattice constants were refined by PARAM (XRAY system, 1976). The cell dimensions for these three compounds are listed in Table 1 together with those of TbNi which have been redetermined by the same method.
$\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$
The unit-cell data indicated a similarity with $\mathrm{Gd}_{0.7} \mathrm{Y}_{0.3} \mathrm{Ni}$, which has $h_{2} c$ base-structure stacking.

Table 1. Crystallographic data for $\mathrm{FeB}-\mathrm{CrB}$ stacking variants in the quasibinary section $\mathrm{Gd}_{1-x} \mathrm{~Tb}_{x} \mathrm{Ni}$ (annealed at 1073 K)

Composition	$\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$	$\mathrm{Gd}_{0.3} \mathrm{~Tb}_{0.7} \mathrm{Ni}$	$\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$	$\mathrm{TbNi}(\mathrm{l} . \mathrm{t} .)^{*}$
Base-structure stacking	$h_{2} c_{3} h_{2} c_{2}$	$h_{2} c_{2}$	$h_{2} c$	$h_{4} c_{2}$
Percentage of hexagonal base-	44.4%	50%	66.7%	66.7%
\quad structure stacking				
Space group	$P 2_{1} / m$			
Z	18	8	6	12
$a(\AA)$	$32.49(7)$	$14.35(2)$	$10.67(2)$	$21.34(4)$
$b(\AA)$	$4.226(6)$	$4.201(2)$	$4.195(4)$	$4.197(2)$
$c(\AA)$	$5.478(8)$	$5.458(4)$	$5.457(8)$	$5.458(3)$
$\beta\left({ }^{\circ}\right)$	$101.9(2)$	$100.6(1)$	$97.2(2)$	$97.1(1)$

[^0] Paccard (1970) see text.
© 1981 International Union of Crystallography

However, since the stackings $h_{2} c$ and $h_{4} c_{2}$ cannot be distinguished unambiguously from powder diagrams, it was decided to study and refine the structure of $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$ by single-crystal methods. To avoid any pitfalls with the cell determined by the peak-hunting program (which indicated $h_{2} c$), the cell chosen for the data collection was purposely doubled along a (in order to correspond to $h_{4} c_{2}$). However, no reflection belonging to this larger cell alone was above the background level.
$\mathrm{Gd}_{0.3} \mathrm{~Tb}_{0.7} \mathrm{Ni}$
A comparison between observed and calculated powder intensities obtained with LAZY PULVERIX (Yvon, Jeitschko \& Parthé, 1977) allowed us to ascertain that this compound has a structure isotypic with $\mathrm{Gd}_{0.55} \mathrm{Dy}_{0.45} \mathrm{Ni}$ with base-structure stacking $h_{2} c_{2}$.
$\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$
On the basis of the lattice dimensions of $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ it could be concluded that this compound was also an $\mathrm{FeB}-\mathrm{CrB}$ stacking variant. The problem of structure determination was therefore mainly to find out the correct stacking sequence, which was accomplished from the unit-cell relationships for $\mathrm{FeB}-\mathrm{CrB}$ stacking variants derived previously (Klepp \& Parthé, 1980). By application of equation (17a) in Klepp \& Parthe (1980), the number of stacking steps in the sequence, $p+n,{ }^{*}$ was determined to be 9 . The number of uncompensated sideways displacements, $p-n, *$ can be derived from equation (18). In the present case, however, considering the error limits of the measured unit cell, this equation gave two acceptable solutions, one with $p-n=1$ and the other with $p-n=5$. According to Klepp \& Parthe (1981), for $p+n=9$ there are altogether 21 stacking possibilities, 14 of which have space group $P 2_{1} / m$ (see below). Considering only the stacking variants for $p-n=1$ and $p-n$ $=5$, this number reduces to 10 . On the other hand it could be assumed from previously obtained experimental results on $\mathrm{Gd}_{1-x} R_{x} \mathrm{Ni}$ alloys ($R=\mathrm{Dy}, \mathrm{Y}$) that also in the $\mathrm{Gd}_{1-x} \mathrm{~Tb}_{x} \mathrm{Ni}$ system the percentage of hexagonal base-structure stacking increases with x. Thus, the percentage of hexagonal stacking for $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ had to have a value between 0% (c stacking for GdNi) and 50% ($h_{2} c_{2}$ stacking for $\mathrm{Gd}_{0.3} \mathrm{~Tb}_{0.7} \mathrm{Ni}$). With this limitation, the number of possible stackings reduced to three for $p-n=1$ and to four for $p-n=5$. For the remaining seven stacking possibilities, powder diffraction diagrams were calculated with $L A Z Y$ PULVERIX (Yvon, Jeitschko \&

[^1]Parthe, 1977). Comparison with the observed diffraction diagram indicated that the stacking sequence is $h_{2} c_{3} h_{2} c_{2}$. This result was corroborated by the singlecrystal structure refinement.

Structure refinement

Intensities were collected for $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ and $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$ with Mo $K a$ radiation ($\theta-2 \theta$ scan mode, $6 \leq 2 \theta \leq 54^{\circ}$). Two sets of symmetry-independent reflections were measured for each crystal. Background, Lorentz and polarization corrections were applied and absorption effects were accounted for by a spherical absorption correction $(\mu R=2.6$ for $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}, \mu R=2.0$ for $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$). Equivalent reflections were averaged yielding unique sets of 669 and 244 observed reflections, respectively.

The structures of $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ and $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$ were refined by full-matrix least squares with $C R Y L S Q$ of the XRAY system (1976). A random distribution of the two rare-earth atoms was assumed and their

Table 2. Positional and thermal parameters of $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ and $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$

The space group is $P 2_{1} / m$. All atoms are on equipoint 2(e). Random distribution of the rare-earth atoms is assumed, the occupation ratio of the rare-earth atoms in the individual sites being identical with the ratio given by the overall chemical formula. The isotropic temperature factor is expressed as $T=\exp \left(-2 \pi^{2} U s^{2}\right)$, where $s=1 / d_{h k l}, U$ is in $\AA^{2} \times 10^{4}$. (The values for the isotropic temperature factors are obtained by recalculation from the anisotropic ones. E.s.d.'s are given in parentheses.)

	x	y	z	U
$\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$				
$R(1)$	0.0401 (1)	0.25	$0 \cdot 1820$ (7)	130 (10)
$R(2)$	0.1513 (1)	0.25	0.0763 (7)	140 (10)
$R(3)$	0.2618 (1)	0.25	0.4409 (7)	160 (10)
$R(4)$	0.3734 (1)	0.25	0.3380 (7)	130 (10)
$R(5)$	0.4844 (1)	0.25	0.2337 (7)	131 (9)
$R(6)$	0.5955 (1)	0.25	0.1302 (7)	130 (10)
$R(7)$	0.7067 (1)	0.25	0.0235 (7)	170 (10)
$R(8)$	$0 \cdot 8176$ (1)	0.25	0.3897 (7)	150 (10)
$R(9)$	0.9288 (1)	0.25	0.2875 (7)	130 (10)
$\mathrm{Ni}(1)$	0.0082 (3)	0.25	0.636 (2)	160 (30)
$\mathrm{Ni}(2)$	$0 \cdot 1197$ (3)	0.25	0.529 (2)	180 (30)
$\mathrm{Ni}(3)$	0.2298 (3)	0.25	0.908 (2)	170 (30)
$\mathrm{Ni}(4)$	0.3413 (3)	0.25	0.792 (2)	160 (30)
$\mathrm{Ni}(5)$	0.4523 (3)	0.25	0.688 (2)	170 (30)
$\mathrm{Ni}(6)$	0.5634 (3)	0.25	0.583 (2)	160 (30)
$\mathrm{Ni}(7)$	0.6747 (3)	0.25	0.476 (2)	140 (30)
$\mathrm{Ni}(8)$	0.7859 (3)	0.25	0.858 (2)	210 (30)
$\mathrm{Ni}(9)$	0.8973 (3)	0.25	0.744 (2)	170 (30)
$\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$				
$R(1)$	$0 \cdot 1198$ (6)	0.25	0.8948 (9)	140 (40)
$R(2)$	0.4539 (7)	0.25	0.742 (1)	130 (30)
$R(3)$	0.7869 (6)	0.25	0.5833 (9)	120 (40)
$\mathrm{Ni}(1)$	0.025 (2)	0.25	0.380 (3)	190 (90)
$\mathrm{Ni}(2)$	0.357 (2)	0.25	0.211 (3)	220 (90)
$\mathrm{Ni}(3)$	$0 \cdot 690$ (2)	0.25	0.053 (3)	200 (100)

positional and thermal parameters were restricted to have identical values. Scattering factors for neutral atoms (Cromer \& Mann, 1968) were used and anomalous-dispersion corrections (International Tables for X-ray Crystallography, 1974) applied. Refinement with isotropic temperature factors converged to $R=0.10\left(\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}\right)$ and $R=0.091$ $\left(\mathrm{Gd}_{0 \cdot 2} \mathrm{~Tb}_{0 \cdot 8} \mathrm{Ni}\right)$. Introduction of anisotropic thermal parameters led to the final R of $0.091\left[R_{w}=0.092\right.$, $w=1 / \sigma^{2}(F), 1144$ contributing reflections: $669+475$ weak reflections which calculate greater than the observed] for $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ and $R=0.071\left[R_{w}=\right.$ $0.096, w=1 / \sigma^{2}(F), 244$ contributing reflections] for $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$. The structural data of both compounds are listed in Table 2.*

Results

A drawing of the $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ structure is shown in Fig. 1. Drawings for the two other structures which are isotypic with $\mathrm{Gd}_{0.55} \mathrm{Dy}_{0.45} \mathrm{Ni} \quad\left(\mathrm{Gd}_{0.3} \mathrm{~Tb}_{0.7} \mathrm{Ni}\right)$ and $\mathrm{Gd}_{0.7} \mathrm{Y}_{0.3} \mathrm{Ni} \quad\left(\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}\right)$ can be found in the previous publication (Klepp \& Parthé, 1980).

The interatomic distances for $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ and $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$ are listed in Tables 3 and 4 respectively. As can be seen from the $R-R$ distances, both

[^2]Table 3. Interatomic distances (\AA) in $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni} u p$ to $4 \AA$
E.s.d.'s are in parentheses, $R \equiv \mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6}$.

$\mathrm{Ni}(1)-R(9)$	2.873 (13)	$\mathrm{Ni}(2)-R(1)$	2.874 (13)
$R(1)$	$2 \cdot 886$ (13)	$R(2)$	2.875 (13)
$2 R(9)$	2.910 (8)	$2 R(8)$	2.905 (8)
$2 R(1)$	2.927 (9)	$2 R(9)$	2.936 (9)
$R(1)$	2.955 (12)	$R(2)$	2.961 (12)
$2 \mathrm{Ni}(1)$	2.578 (9)	$2 \mathrm{Ni}(9)$	2.580 (8)
$\mathrm{Ni}(9)$	3.768 (17)	$\mathrm{Ni}(3)$	3.745 (17)
$\mathrm{Ni}(2)$	3.787 (17)	$\mathrm{Ni}(1)$	3.787 (17)
$\mathrm{Ni}(3)-R(2)$	2.886 (13)	$\mathrm{Ni}(4)-R(3)$	2.884 (13)
$R(3)$	2.890 (12)	$R(4)$	2.892 (13)
$2 R(8)$	2.907 (8)	$2 R(6)$	2.914 (8)
2R(7)	2.923 (8)	$2 R(7)$	2.928 (9)
$R(3)$	2.955 (15)	$R(4)$	2.954 (12)
$2 \mathrm{Ni}(8)$	2.577 (10)	$2 \mathrm{Ni}(7)$	2.566 (8)
$\mathrm{Ni}(2)$	3.745 (17)	$\mathrm{Ni}(5)$	3.764 (17)
$\mathrm{Ni}(4)$	$3 \cdot 806$ (17)	$\mathrm{Ni}(3)$	3.806 (17)
$\mathrm{Ni}(5)-R(4)$	$2 \cdot 864$ (13)	$\mathrm{Ni}(6)-R(5)$	$2 \cdot 867$ (13)
$R(5)$	2.893 (13)	$R(6)$	2.885 (13)
$2 R(5)$	2.917 (8)	$2 R(4)$	2.914 (8)
$2 R(6)$	2.917 (9)	$2 R(5)$	2.922 (9)
$R(5)$	2.954 (12)	$R(6)$	2.961 (13)
$2 \mathrm{Ni}(6)$	2.574 (9)	2Ni(5)	2.574 (9)
$\mathrm{Ni}(4)$	3.764 (17)	$\mathrm{Ni}(5)$	3.773 (17)
$\mathrm{Ni}(6)$	3.773 (17)	$\mathrm{Ni}(7)$	3.780 (16)
$\mathrm{Ni}(7)-R(7)$	2.882 (13)	$\mathrm{Ni}(8)-R(8)$	$2 \cdot 883$ (13)
$2 R(3)$	2.921 (8)	$R(7)$	2.899 (13)
$2 R(4)$	2.934 (9)	$2 R(2)$	2.909 (8)
$R(4)$	2.934 (9)	$2 R(3)$	2.914 (9)
$R(7)$	2.962 (12)	$R(8)$	2.956 (14)
$2 \mathrm{Ni}(4)$	2.566 (8)	$2 \mathrm{Ni}(3)$	$2 \cdot 577$ (10)
$\mathrm{Ni}(8)$	3.779 (17)	$\mathrm{Ni}(7)$	3.779 (17)
$\mathrm{Ni}(6)$	$3 \cdot 780$ (16)	$\mathrm{Ni}(9)$	$3 \cdot 801$ (17)
$\mathrm{Ni}(9)-R(9)$	2.890 (13)	$R(1)-2 R(9)$	3.566 (7)
$R(8)$	$2 \cdot 895$ (13)	$2 R(1)$	3.615 (9)
$2 R(1)$	2.902 (8)	$2 R(9)$	3.630 (7)
$2 R(2)$	2.930 (9)	$R(2)$	3.776 (10)
$R(9)$	2.943 (12)	$R(9)$	3.777 (10)

$R(3)-2 R(7)$	$3.588(7)$
$2 R(8)$	$3.603(7)$
$2 R(7)$	$3.614(8)$
$R(2)$	$3.730(12)$
$R(4)$	$3.783(10)$
$R(5)-2 R(5)$	$3.575(7)$
$2 R(6)$	$3.611(9)$
$2 R(5)$	$3.622(7)$
$R(4)$	$3.766(10)$
$R(6)$	$3.769(10)$
$R(6)-2 R(3)$	$3.588(7)$
$2 R(4)$	$3.610(9)$
$2 R(3)$	$3.614(7)$
$R(8)$	$3.743(12)$
$R(6)$	$3.777(10)$
$R(9)-2 R(1)$	$3.566(7)$
$2 R(2)$	$3.614(9)$
$2 R(1)$	$3.630(7)$
$R(8)$	$3.770(10)$
$R(1)$	$3.777(10)$

compounds obey closely the geometrical requirement for ideal stacking derived previously: each R has six nearly equidistant R neighbours.
$\mathrm{Gd}_{0 \cdot 4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ is the sixth mixed $\mathrm{FeB}-\mathrm{CrB}$ stacking variant found in rare-earth-nickel systems. Mixed $\mathrm{FeB}-\mathrm{CrB}$ stacking variants were recently reported by Fornasini \& Merlo (1980) for ThNi with basestructure stacking ($h c)_{2}$ and interestingly also for $\alpha-\mathrm{CaCu}$ with base-structure stacking (hchch) ${ }_{2}, \beta-\mathrm{CaCu}$ with base-structure stacking $h c_{2} h c$ and SrAg with base-structure stacking $(h c)_{2}$ (Merlo \& Fornasini, 1981). However, the number of mixed FeB-CrB stacking variants is still too small to derive any systematics concerning the formation of a particular stacking sequence.

It is in this respect interesting that a comparatively small substitution of Tb by Gd leads to a change of the stacking sequence ($h_{4} c_{2}$ to $h_{2} c$) which is not accompanied by a change in the percentage of hexagonal stacking.

The redetermined and refined unit-cell data of TbNi allow an unambiguous choice of unit cell to be made which agrees with equation (16). This cell is distinguishable from other possible cells because the projection of its a axis, $a \sin (\beta-90)$, is equal to the displacement caused by the uncompensated stacking steps:

$$
(p-n) \frac{a_{\mathrm{FeB}}}{2} \tan \psi .
$$

With the unit-cell setting chosen by Lemaire \& Paccard (1970) our refined values give $a=21.36$ (4), $b=4.197$ (2), $c=5.458$ (3) $\AA, \beta=97.6$ (1) ${ }^{\circ}$ instead of

Table 4. Interatomic distances (\AA) in $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$ up to $4 \AA$

E.s.d.'s are in parentheses, $R \equiv \mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8}$			
$\mathrm{Ni}(1)-R(1)$	$2.862(15)$	$\mathrm{Ni}(2)-R(1)$	$2.877(18)$
$R(3)$	$2.893(19)$	$R(2)$	$2.880(17)$
$2 R(3)$	$2.894(13)$	$2 R(2)$	$2.902(13)$
$2 R(1)$	$2.907(11)$	$2 R(3)$	$2.904(13)$
$R(1)$	$2.954(17)$	$R(2)$	$2.953(16)$
$2 \mathrm{Ni}(1)$	$2.560(12)$	$2 \mathrm{Ni}(3)$	$2.557(11)$
$\mathrm{Ni}(2)$	$3.770(26)$	$\mathrm{Ni}(3)$	$3.767(26)$
$\mathrm{Ni}(3)$	$3.787(24)$	$\mathrm{Ni}(1)$	$3.770(26)$
$\mathrm{Ni}(3)-R(2)$	$2.856(18)$	$R(1)-2 R(3)$	$3.577(7)$
$R(3)$	$2.879(17)$	$2 R(3)$	$3.584(8)$
$2 R(1)$	$2.906(13)$	$2 R(1)$	$3.604(9)$
$2 R(2)$	$2.907(13)$	$R(3)$	$3.740(12)$
$R(3)$	$2.950(15)$	$R(2)$	$3.761(12)$
$2 \mathrm{Ni}(2)$	$2.557(11)$		
$\mathrm{Ni}(2)$	$3.767(26)$		
$\mathrm{Ni}(1)$	$3.787(24)$		
$R(2)-2 R(2)$	$3.548(8)$	$R(3)-2 R(1)$	$3.577(7)$
$2 R(2)$	$3.606(9)$	$2 R(1)$	$3.584(8)$
$2 R(3)$	$3.607(9)$	$2 R(2)$	$3.607(9)$
$R(1)$	$3.761(12)$	$R(1)$	$3.740(12)$
$R(3)$	$3.762(12)$	$R(2)$	$3.762(12)$

$a=21.26(3), b=4.21(1), c=5.45(1) \AA, \beta=$ $97.4(3)^{\circ}$. Application of equation (18) leads to an h (or $p-n$) value of 2.18 indicating that this is not the cell which corresponds to our convention. Transformation to the unit cell listed in Table 1 results in $p-n=2.03$, which is a value close enough to an integer to leave no doubt that this is the unit cell to choose.

Possible space groups for $\mathrm{FeB}-\mathrm{CrB}$ stacking variants

Once the unit cell is known, further information about the space group can considerably limit the number of stacking variants to be considered in a model calculation. For the derivation of the space groups of $\mathrm{FeB}-\mathrm{CrB}$ stacking variants, it is advantageous to disregard for the moment the Ni atoms and consider only the stacking of the rectangular buckled layers of rare-earth atoms (Fig. 2). The symmetry elements within one layer are two mutually perpendicular mirror planes (\perp to $b_{\text {FeB }}$ and \perp to $c_{\text {FeB }}$) and a diagonal glide plane in the layer (\perp to the two mirror planes). If the layers were stacked directly one above the other, this would result in space group Pmmn. The stacking operations actually occurring, however, lead to a displacement in the direction of c_{FeB}. From a given layer, two stacking positions (+ and -) are available and the stacking system may therefore be referred to as doubly connected (Beck, 1967). This allows one to apply the Jagodzinski-Wyckoff as well as the corresponding Zhdanov notation for the description of these sequences. It is characteristic of the $\mathrm{FeB}-\mathrm{CrB}$ stacking system that the sideways displacement of a stacking step is not a simple rational fraction of the translation period in the corresponding direction. It is therefore in general not possible in the course of stacking to arrive at a layer with an identical position to the starting layer unless the numbers of positive and negative stacking steps are equal ($p=n$). The symmetry of any arrangement of stacked buckled rare-earth layers and also of the Ni-centred $\mathrm{FeB}-\mathrm{CrB}$ stacking variants is uniquely determined by the symmetry of a single-stacked layer and the symmetry properties of the stacking sequence. The symmetry properties of stacking sequences have been studied by Patterson \& Kasper (1967), who introduced Zhdanov

Fig. 2. Perspective view of the buckled rare-earth layer, which is found in all $\mathrm{FeB}-\mathrm{CrB}$ stacking variants.

Table 5. Survey of possible space groups for $\mathrm{FeB}-\mathrm{CrB}$ stacking variants

The space groups are given in the standard setting. Reference to equivalent axes of the FeB cell is made in the footnote. The symmetry of the stacking sequence corresponding to a given space group is, where possible, denoted by special symbols (see text) which are written below the space-group symbol.

$p+n$	Orthorhombic $p-n=0$	Monoclinic $p-n \geq 0$	Orthorhombic $p-n=1$
1			Cmcm*
Even, ≥ 2	Pnma ${ }^{\dagger}$ $1-0-1-0-1$		
Any, ≥ 3		$\begin{gathered} P 2_{1} / m^{\dagger} \\ -()-0- \end{gathered}$	
Even, ≥ 6	$\begin{gathered} P m n 2_{1} \ddagger \\ 1-1-1 \end{gathered}$		
Any, ≥ 7	Pm ${ }^{\dagger}$		
Even, ≥ 12	Pmc2, §		

formulae which were complemented by special symmetry symbols. According to the symmetry properties of the stacking sequence, six different space groups are possible for $\mathrm{FeB}-\mathrm{CrB}$ stacking variants. Each of these space groups will have a mirror plane originating from the mirror plane of the individual layer (\perp to b_{FeB}) which is not affected by the stacking.
(a) An asymmetric stacking sequence, such as 4111, leads to space group Pm.
(b) A symmetrical stacking sequence where the numbers of like sign in the Zhdanov symbols are mirrored, such as (4) $\mathbf{3} 1(\underline{2}) 1 \underline{3}$, leads to an inversion centre and a twofold screw axis. The corresponding space group is $P 2_{1} / m$.
(c) An antisymmetrical stacking sequence where the numbers of opposite sign are mirrored in the Zhdanov
symbol, such as $|211| 112 \mid$, retains the diagonal glide plane of the layers. The space group is $P m n 2_{1}$.
(d) A stacking sequence consisting of two subperiods with opposite signs, such as 321321 , leads to a glide plane, the corresponding space group being Pmc2 ${ }_{1}$.
(e) A stacking sequence meeting the conditions (b), (c) and (d), such as $|1(\underline{2})| 11(2) 1$, leads to space group Pnma.
(f) In the special case that $p+n=1$, the space group is Cmcm as found with the CrB type.
The different possibilities, together with the corresponding minimum values of $p+n$ (see Table 1 , Klepp \& Parthé, 1981), are listed in Table 5.

This study was supported by the Swiss National Science Foundation under contract No. 2.601-0.80.

References

Веск, P. A. (1967). Z. Kristallogr. 124, 101-114.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Fornasini, M. L. \& Merlo, F. (1980). Joint Italo-Swiss Meeting on Crystallography, Crystal Growth and Materials Science, Trento, Collected Abstracts pp. 54-57.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Klepp, K. \& Parthé, E. (1980). Acta Cryst. B36, 774-782.
Klepp, K. \& Parthé, E. (1981). Acta Cryst. A37, 61-65.
Lemaire, R. \& Paccard, D. (1970). J. Less-Common Met. 21, 403-413.
Merlo, F. \& Fornasini, M. L. (1981). Acta Cryst. B37, 500-503.
Patterson, A. L. \& Kasper, J. S. (1967). International Tables for X-ray Crystallography, Vol. II. Birmingham: Kynoch Press.
XRAY system (1976). Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Yvon, K., Jeitschko, W. \& Parthé, E. (1977). J. Appl. Cryst. 10, 73-74.

[^0]: * For data of TbNi (low-temperature modification) according to Lemaire \&

[^1]: * v and h in equations $(16 a),(16 d),(17 a),(17 b),(18)$ and (21) of Klepp \& Parthé (1980) should be substituted by $p+n$ and $p-n$ respectively in order to achieve consistency with the terminology used by Patterson \& Kasper (1967) to describe close packing.

[^2]: * Lists of structure factors and anisotropic thermal parameters for $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ and $\mathrm{Gd}_{0.2} \mathrm{~Tb}_{0.8} \mathrm{Ni}$ have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35716 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

 Fig. 1. Projection of the unit cell of $\mathrm{Gd}_{0.4} \mathrm{~Tb}_{0.6} \mathrm{Ni}$ along [010]. Open circles correspond to rare-earth atom sites, full circles represent the sites of the Ni atoms. Small circles are at height $\frac{1}{4}$, large circles at height $\frac{3}{4}$. The drawing displays idealized point positions derived from periodic unit-cell twinning.

